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Abstract

In this paper, three-dimensional (3D) multi-relaxation time (MRT) lattice-Boltzmann (LB) models for multiphase flow
are presented. In contrast to the Bhatnagar-Gross—Krook (BGK) model, a widely employed kinetic model, in MRT mod-
els the rates of relaxation processes owing to collisions of particle populations may be independently adjusted. As a result,
the MRT models offer a significant improvement in numerical stability of the LB method for simulating fluids with lower
viscosities. We show through the Chapman-Enskog multiscale analysis that the continuum limit behavior of 3D MRT LB
models corresponds to that of the macroscopic dynamical equations for multiphase flow. We extend the 3D MRT LB
models developed to represent multiphase flow with reduced compressibility effects. The multiphase models are evaluated
by verifying the Laplace—Young relation for static drops and the frequency of oscillations of drops. The results show sat-
isfactory agreement with available data and significant gains in numerical stability.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, computational methods based on the lattice-Boltzmann equation (LBE) have attracted
much attention. They are based on the paradigm of simulating complex emergent physical phenomena by
employing minimal discrete kinetic models that represent the interactions and spatial and temporal evolution
of quasi-particles on a lattice [1,2]. Originally developed to overcome certain drawbacks such as the presence
of statistical noise and the lack of Galilean invariance of lattice-gas automaton (LGA) [3], the lattice-Boltz-
mann equation (LBE) [4] has undergone a number of further refinements. They include enhanced representa-
tion of collisions of particle populations through a relaxation process [5] which was further simplified by
employing the Bhatnagar—Gross—Krook (BGK) approximation [6] later [7,8]. Also, its formal connection to
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the Boltzmann equation, developed in the framework of non-equilibrium statistical mechanics, was estab-
lished [9].

The LBE has the beneficial feature that by incorporating physics at scales smaller than macroscopic scales,
complex fluid flows such as multiphase flows can be simulated [10]. In particular, phase segregation and inter-
facial fluid dynamics can be simulated by incorporating inter-particle potentials [11], concepts based on free
energy [12] or the kinetic theory of dense fluids [13-15]. The inter-particle potential approach in Ref. [11]is an
earlier LBE approach for multiphase flows and is based on non-local pseudo-potentials between particle pop-
ulations. On the other hand, free-energy based methods are derived from thermodynamic principles that nat-
urally provide interfacial multiphase flow physics [12]. The LBE approaches based on kinetic theory of dense
fluids represent physics based on mean-field interaction forces and exclusion volume effects [13-15]. More
recently, LBE models have also been developed to handle high density ratio problems, which also overcome
some of the other limitations of earlier approaches [16,17]. In general, the approaches above employed the
BGK approximation to represent the collision process in the LBE and some of their applications in 3D are
presented in Ref. [18].

It is well known that the BGK model, a single-relaxation time model, often results in numerical instability
when fluids with relatively low viscosities are simulated [19]. The instability problems may be compounded in
three-dimensional (3D) flows when physics may not be adequately resolved owing to computational con-
straints. To address this limitation with the standard LB models, several approaches have been proposed.
In one approach, known as the entropic lattice Boltzmann method (ELBE), the equilibrium distribution func-
tion is defined in such a way that it minimizes a certain convex function, a Lyapunov functional designated as
the H-function, under the constraint of local conservation laws [20,21]. As a result, it ensures the positivity of
the distribution function of particle populations and thus improves the numerical stability. While this
approach is endowed with elegant and desirable physical features, its numerical accuracy is not established
and it would incur relatively heavy computational overhead [22].

Alternatives to the BGK model have been proposed to improve numerical stability. In the multi-relaxation
time (MRT) method [23,24], by choosing different and carefully separated time scales to represent changes in
the various physical processes due to collisions, the stability of the LBE can be significantly improved [19].
Another interesting approach is the fractional time step method [25]. In this approach, stability is improved
by considering fractional propagation of particle populations by reducing time step, which increases compu-
tational time. While this approach was employed for the BGK model, the underlying idea is not limited to a
particular collision model. Indeed such an approach could be employed in conjunction with the MRT model
to further improve stability. Yet another possibility for improving stability is based on the so-called two-relax-
ation time (TRT) models (e.g. Ref. [26]). These are variants of the MRT models and can be considered as lim-
iting cases of the more general MRT models.

In addition to the computational advantage of significantly improved stability, the MRT models also have
physical advantages in that they are flexible enough to incorporate additional physics that cannot be naturally
represented by the models based on the BGK approximation. In contrast to the BGK models, MRT models
deal with the moments of the distribution functions, such as momentum and viscous stresses directly. This
moment representation provides a natural and convenient way to express various relaxation processes due
to collisions, which often occur at different time scales. Since the BGK model can represent only a single relax-
ation time for all processes, it cannot naturally represent physics in certain complex fluids. For example, as
discussed in Ref. [27], BGK models cannot represent all the essential physics in viscoelastic flows in 3D. More-
over, MRT models make it possible to incorporate appropriate acoustic and thermal properties through
adjustable Prandtl numbers for simulating thermo-hydrodynamics by employing a hybrid LBE/finite-differ-
ence model [28,29]. BGK-based models are not able to do so naturally. Also, in a more recent work, MRT
models have been shown to be capable of handling more general forms of diffusional transport than possible
with the BGK model [30]. In addition to the capability of dealing with genuinely anisotropic diffusion prob-
lems, their MRT formulation is able to suppress directional artifacts arising due to discrete lattice effects even
in isotropic problems. Such features are possible with MRT models because they lend themselves readily to
constructing and controlling various models to evolve at rates consistent with the dynamics of physical phe-
nomena of interest. Indeed, approaches based on the MRT representation are inspired by the moment method
developed in the seminal work of Maxwell [31] which was further developed by Grad [32].
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While prior works have demonstrated the computational advantages of the MRT models for single-phase
flows in 2D by Lallemand and Luo [19] and in 3D by d’Humiéres et al. [24] and for turbulence modeling
[29], it has not been shown for multiphase flows in 3D in previous works. Multiphase flows involve addi-
tional physical complexity as a result of interfacial physics involved — i.e., phase segregation and surface ten-
sion effects. In this case, the accuracy of the numerical discretization of the source terms representing
interfacial physics becomes an important consideration and needs to be incorporated carefully into the
framework of the MRT model. These terms should be modeled in a way that, when we establish their rela-
tion with the various moments, the dynamical equations in the asymptotic limit should correspond to the
desired macroscopic behavior for multiphase flow. These elements were not considered in single-phase
MRT models. We introduce a second-order discretization of these source terms and avoid implicitness
through a transformation which, to our best knowledge, is applied to MRT models for multiphase flows
in 3D for the first time in this work. Recently, a MRT model for 2D multiphase problems was developed
[34]. There are significant differences in the development and implementation of 2D and 3D MRT models.
These will be discussed below. Furthermore, realistic multiphase flows are 3D in nature and in this work, we
develop a 3D MRT model for such problems by employing a model for interfacial physics based on the
kinetic theory of dense fluids [13-15].

The specific contributions of this work will now be stated. We develop a 3D MRT model incorporating
phase segregation and surface tension effects through source terms discretized by using trapezoidal rule inte-
gration and simplified through a transformation to achieve an effectively explicit 3D MRT model for multi-
phase flows. Since the underlying lattice structure for 2D and 3D models are different, the moment basis for
the corresponding MRT models are different, and is more complicated in 3D. We present the theoretical devel-
opments based on the 3D moment basis for multiphase flow which, to our best knowledge, has not been con-
sidered in prior work. We derive the continuum equations for multiphase flow from the 3D MRT model
through a Chapman-Enskog analysis [33], provide the dynamical relations between the various moments
and forcing terms representing interfacial physics including surface tension forces, develop the relationships
between the gradients of momentum fields in terms of the non-equilibrium parts of certain moments and their
corresponding relaxation times, and explicitly derive the relationship between the transport coefficients for the
fluid flow and appropriate relaxation times. To improve the stability of the approach, the model is then trans-
formed in such a way that compressibility effects are reduced. Furthermore, we evaluate the accuracy and
gains in stability of the MRT model for some canonical multiphase problems in 3D.

As the MRT models are endowed with greater computational stability and potential to incorporate addi-
tional physics, there is considerable interest in their applications to multiphase problems: The 2D MRT model
developed by McCracken and Abraham [34] extended for axisymmetric problems using the axisymmetric LB
model [35] has been employed to study the physics of break up of liquid jets [36]. This axisymmetric MRT
model and the 3D MRT model developed in this work have also been employed to study the physics of
head-on as well as off-center binary drop collisions, respectively [37]. The physically inspired MRT approach
developed in this paper also provides a natural framework for incorporating additional physics such as visco-
elastic or thermal effects in multiphase flows through an LB model, which are subjects of future work. The rest
of the paper is organized as follows. In Section 2, the 3D MRT LBE multiphase models are developed. In
Section 3, the macroscopic dynamical equations of these models are derived by using a Chapman-Enskog
multiscale analysis. Section 4 transforms the model to simulate multiphase flow with reduced compressibility
effects. In Section 5, the model is applied to benchmark problems to evaluate its accuracy and gains in stabil-
ity. Finally, the paper closes with summary and conclusions in Section 6.

2. 3D MRT LBE model for multiphase flow

We develop a MRT model for multiphase flows in which the underlying interfacial physics is based on the
kinetic theory of dense fluids. In particular, we consider that the particle populations representing the dense
fluids experience mean-field interaction forces and respect Enskog effects for dense non-ideal fluids [13,14]. The
effect of collisions of particle populations is represented though a generalized relaxation process in which the
distribution functions for discrete velocity directions approach their corresponding local equilibrium values at
characteristic time scales given in terms of a generalized collision or scattering matrix.
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In the following, we consider subscripts with Greek symbols for particle velocity directions and Latin sym-
bols for Cartesian components of spatial directions. We assume summation convention for repeated indices
for the components of spatial directions. In addition, unless otherwise stated, we follow the convention that
vectors corresponding to three-dimensional position space are represented by non-capitalized symbols with
arrowheads; the vectors with a particle velocity basis are denoted by non-capitalized boldface symbols; the
square matrices constructed from the particle velocity basis are represented by non-boldface capitalized sym-
bols. We consider the following MRT LBE with a source term that gives rise to phase segregation and surface
tension effects:

Lo . 1
S+ €0t +0) — (X, 1) = ka|(x¢1) + D) |:Sfx|(xﬁz) + S9<|(x+e,6n1+5r)} O (1)

Here, f,, is the discrete single-particle distribution function, corresponding to the particle velocity, ¢,, where o is
the velocity direction. The Cartesian component of the particle velocity ¢ is given by ¢ = 6,/6,, where J, is the
lattice spacing and 9, is the time step. The left-hand side (LHS) of this equation represents the change in the
distribution function as particle populations advect from one lattice node to its adjacent one along the char-
acteristic direction represented by the discrete lattice velocity direction e; (see Figs. 1 and 2). On the other
hand, the right-hand side (RHS) represents the effect of particle collisions and force interactions.

The form of the collision term €, that incorporates MRT collision processes will be discussed below. The
source term S, which models the interfacial physics in multiphase flow needs to be accurately represented. In
Eq. (1), we considered a second-order trapezoidal rule discretization of this term. It may be written as [13]

(€27 — w))(F} + Fex,)
PRT

Sy = f;qM(paﬁ)a (2)
where F! is the interaction force term that models the interfacial physics, while Fey, ; corresponds to external or
imposed forces such as gravity. F i is modeled as a function of density following the work of van der Waals
[38]. The exclusion-volume effect of Enskog [33] is also incorporated to account for increase in collision prob-
ability due to the increase in the density of non-ideal fluids. These features account for the phase segregation
and surface tension effects. For more details, the reader is referred to Ref. [13]. In Eq. (2), /*¢M is the local
discrete Maxwellian and its functional expression will be presented below. Effectively, F} may be written as

F/l':_ajlp_‘_Fs\/' (3>
In Eq. (3), F;,; represents the surface tension force and is related to the density p and its gradients by

Fy; = kpd;Vp, (4)

Fig. 1. D3Ql5 lattice.
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Fig. 2. D3Q19 lattice.

where x is a surface tension parameter. It is related to the surface tension ¢ of the fluid by the equation [40]

o= x/ (2—’2)2@, (5)

where n is the direction normal to the interface. Thus, the surface tension is a function of both the parameter x
and the density profile across the interface.
The term  in Eq. (3) refers to the non-ideal part of the equation of state (EOS)

¥(p) =P — pRT. (6)
In this work, the Carnahan—Starling—van der Waals EOS [39],
1 M2 a3
P= pRT{LW} _ ap27 (7)
(I=7)

is employed where y = bp/4. The parameter a is related to the inter-particle pair-wise potential and b is related
to the effective diameter d of the particle, and the mass m of a single particle, by b = 2nd*/3m. \ assumes an
important role in determining phase segregation [13]. The Carnahan-Starling—van der Waals EOS has a

— 1/p — T curve, in which dP/dp <0 for certain range of values of p, when the fluid temperature is below
its critical value. This part of the curve represents an unstable physical situation and is the driving mechanism
responsible for keeping the phases segregated and in maintaining a self-generated interface that is diffuse with
a thickness of about 34 lattice grid points.

The local discrete Maxwellian /4™ (p, i) in Eq. (2) is obtained from a truncated expansion in terms of fluid
velocity # of its continuous version, after approximating it for discrete particle velocities ¢, [9]. As a result, it is
a function of the fluid densities and velocities and is given by

— — — 2 — —
. : 1 i pi
eq,M . 1 €y - pu (eoc p“) _tu-p 8

where w,, is the weighting factor. In this representation of the local Maxwellian, the factor RT is related to the
speed of sound ¢ of the model through RT = ¢?, where ¢, = 1/ \/3c. For the three-dimensional, fifteen-velocity
(D3Q15) model [7], shown in Fig. 1, the welghtmg factors become

a=1,

a=2...,7, )
a=9,...,15

o= oIty

W, =

S=
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and for the three-dimensional, nineteen-velocity (D3Q19) model [7], shown in Fig. 2, we have

%’ azl’
W, =% %, a=2,...,7, (10)
e *=38,...,19.
The corresponding particle velocity directions are
(07070)7 azl’
e, =< (£1,0,0),(0,£1,0),(0,0,+1), a«a=2,...,7, (11)
(£1,£1,£1), a=38,...,15
and
(07070)7 OC:l,
e_x;f: (:l:17070)’(0)i170)7(0707i1)7 a:2""777 (12)
(£1,£1,0), (£1,0,£1),(0,£1,£1), a«=8,...,19,
respectively.

We express the effect of collisions in Eq. (1) as a relaxation process through a multi-relaxation time (MRT)
model for the collision term as shown below [19,23,24]:

_;Aaﬂ(fﬂ_f/:q)a (13)

where A, is the component of the collision or the scattering matrix 4. Here, the equilibrium distribution f;q is
an appropriate function of the conserved moments such as the density and momentum and is, in general, not
necessarily the local discrete Maxwellian given by Eq. (8). The hydrodynamic field variables are obtained by
taking the kinetic moments of the distribution functions as

p=> fu (14)

Eq. (1) is implicit. For computational convenience, it can be made explicit if we introduce the transformation
[13]

fa=fuim S 20r. (16)
As a result, Eq. ( 1) is replaced by the following effectively explicit scheme:
e ot 80 =10 = = 3 ATy~ + 3 (1 =3 Sl (1)

where I, is the component of the identity matrix .#.

Next, we construct appropriate sets of linearly independent moments from the distribution functions in
velocity space. Since moments of the distribution function, such as the momentum and viscous stresses,
directly represent physical quantities, the moment representation offers a natural and convenient way to express
the relaxation processes due to collisions. One particular advantage of this representation is that the time
scales of the various processes represented in terms of moments can be controlled independently. The
moments are constructed from the distribution function through a transformation matrix 4 comprising a lin-
early independent set of vectors, i.e.

, (18)

~0
I
Y

where
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.f = [fl7]27]737j47j57j67j77]787]797]?107j117}127}137}147}15]1— (19)
is the vector representing the particle distribution functions for the D3Q15 model and
i = []71ajZﬂf3ﬂf4ﬂ]75af6a]77af8af%flovj‘llaf127]13afl4,J?‘153f167]l73f137j‘19]T (20)

for the D3Q19 model. ~
In Eqgs. (18)20), the superscript “T” represents transpose of a matrix and the vector f represents the
moments

~

T . . . T
S =1P€.€ oGty Gy dos Gos 3Pros Pranws Prys Pozs Poxs Mgz (21)

and

~

. . . T
f: [pvevezﬂjxﬂqxvjy7qujzquﬂ3pxxﬂ37Txxapww’nwvax)mp)z)pzr?mx?m}’7mz] ? (22)

for the D3Q15 and D3Q19 models, respectively. For the D3Q15 model, e and ¢ represent kinetic energy that
is independent of density and square of energy, respectively, jy, j, and j. are the components of the momentum
or mass flux (j = pu.,j, = pu,,j. = pu.),qx, q,,q- are the components of the energy flux, and p.,, p.,, p,- and
P-» are the components of the symmetric traceless viscous stress tensor. The other two normal components of
the viscous stress tensor, p,,, and p.., can be constructed from p,, and p,,,,, where p,,,, = p,, — p... The quantity
My, 18 an antisymmetric third-order moment. For the D3Q19 model, instead of the moment ..., we have five
additional moments: 3n,,, 37,,,, m,, m, and m.. The first two of these moments have the same symmetry as
the diagonal part of the traceless viscous tensor p;;, while the last three vectors are parts of a third rank tensor,
with the symmetry of jip,.., [24].

The underlying principle for the construction of the transformation matrix is based on the observation that
the collision matrix reduces to a diagonal form in an appropriate orthonormal basis, which is obtained by
combinations of monomials of Cartesian components of the particle velocity directions ¢; [23]. Following
d’Humieres et al. [24], for the D3Q15 model we introduce a transformation matrix .7, which represents com-
ponents of the 15 orthogonal basis column vectors vg that form the moment basis, i.e.

ijs

T
T = [Vl,VZ,V3,V4,V5,V6,V7,V8,V9,V1(),V11,V12,V13,V14,V15] ’ (23)
where the components of each column vector may be written as

1 1
U AP =2 v =SS =SSR 3D v = e v = (Sl — 13)ess
1 1
U6y = €yy; U7y = §(5|€;c|2 - 13)61)); Ugy = €oz5 U9y = E(S‘e:'|2 —13)e.;  viow = 3630( - |a¢|2;

U1y = |e_;(

2 2. — . — . — . —
Ulig = eo(y — €, V12y = €uxCoy; V13y = €uy€asz; V14y = €uxCoz; U150 = CoxCox€ysz-
For the D3Q19 model, we have
T
T = [¥1,92, 93,4, V5, V6, V7, V8, Y9, V10, V11, V12, V13, V14, V15, Viss V17, Vig, V19 (24)
based on 19 orthogonal basis column vectors. The components of each of these vectors are

1
v =G5 v = 191G =30, v, =5 QUES - SES +24); va = e

Usy = (5|€_;|2 - 9)ea<x; Uy = eay; Vg = (5|€_;|2 - 9)eo<y; U8y = €z, oy = (5|€_;|2 - g)eocz;
I’ o= Glal = 5)Ge, —laf): v= €, — e

oz

2
Vigg = 369“ — |ea

2

vz = BlE" = 5) (€, — €L);  Viay = €l Visy = s Vigy = €y V17 = (€5, — €1)€n;

V1gy = (eiz - eix)efxy; V19y = (eix - eiy)eaz'
These matrices are formed by a set of linearly independent orthogonal basis vectors (i.e. v, - vg = [,6,4, Where [,
is a normalizing constant) which are constructed by a Gram-Schmidt procedure such that they diagonalize the
collision matrix 4 i.e. A =7 A7 ' [24], where the matrix 4 in moment space is a diagonal matrix. This
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orthogonal set is built in increasing order of moments and then arranged in increasing order of complexity of
the tensorial representation of the moments. An example of such a construction with some details for a 2D
MRT model is given by Bouzidi et al. [41]. As an example, for unit lattice spacing and time steps, i.e.
¢ =1, the simplified form of the transformation matrices is given in Appendix A.

The equilibrium distribution functions £ in moment space are related to those in velocity space, f°9,
through the transformation matrix

[ = T[N =[p, e, o @ 5 a2 305 P P P P, mE] (25)
for the D3Q15 model and

~ T
eq __ g4eq __ eq 2eq eq eq eq cq eq cq eq cq ,.eq ,.6q eq eq eq
f - jf - |:p7e 7e 7],x7qx 7]yaqy 7]z7qz ’3pxx73nww7pww7nwwapxy7p}zapzx7mx 7my ?mz :| (26>

for the D3Q19 model. Notice that for the conserved or hydrodynamic moments corresponding to density and
components of momentum, i.e. f5, where = 1,4,6,8, their equilibrium distributions in moment space are also
the same, i.e. ?;q = f5, where 8 =1,4,6,8 since the collision process does not alter hydrodynamic moments.

The expressions for the equilibrium distribution functions of the non-conserved or kinetic moments, which
are in turn algebraic functions of the conserved moments and obtained by optimizing isotropy and Galilean
invariance, are given by [24]

(Zri+i) (2+72+7) ; ;
el=—p+ ;e =p=S———— =)y ¢ =3y
p p 3 ! 3
5] ) ) ) ) .o .. ..
D PR kU ) P U St D SN VS N/
z 3 z XX 3 p ww p Xy p yz p P74 p

eq
mx}z -

for the D3Q15 model and

Ui t+i+72) 11 G4 +72) 2
A — 11 192> 2y 7=l 2ed — 3,y ___¥¥ ¥y Ui/, T e _ T
e p+ ) ;e =3 » . 30 9 3/

) o) i) 2 -2
gom 2 pal! Ll U ) I LI U=l e Ly
z 3 z) xx 3 p ) xx 2 xx? ww p ’ ww 2 ww)
)e(e :.]x.]y’ ;g :]yjz’ ig :‘/sz7 mzq — 0’ mzq — O7 m:q — O
Y oop p : p ’

for the D3Q19 model.
The collision matrix A in the moment space is given by

~ . T
A= dlag[sl,52;537S47S5756,S7,587S97310,51175127S137S147515] (27)

for the D3Q15 model and

A= diag[Sl,52,537S4,SS7S6,S7,587S9,Slo,51175127S137S1475157S167S17,S187519}T (28)
for the D3Q19 model, where the parameters s; represent the inverse of the relaxation times of the various mo-
ments f in reaching their equilibrium values £°.

The variables sy, 54, S and sg are the relaxation parameters corresponding to the collision invariants p, jy, j,
and j., respectively. Since the collision process conserves these particular moments, the choice of their corre-
sponding relaxation times is immaterial. This is because they are each specified to relax during collisions to
their local equilibrium which are actually defined to be the corresponding pre-collision value of the respective
quantities in the equilibrium distribution /°? (see Egs. (25) and (26)). So, whatever be the relaxation parameters
for these quantities, the collision process does not change their values. The relaxation parameters for these
collision invariants could be set to zero when there is no forcing term S, in the LBE. However, care needs
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to be exercised in selecting the relaxation parameters of MRT LBE with forcing term. This has been pointed
out in Ref. [42]. This is because the collision matrix also influences the forcing term in the effectively explicit
MRT LBE (see Eq. (17)). To correctly obtain the continuum asymptotic limit of this LBE, i.e. the macroscopic
hydrodynamical equations for multiphase flow, derived in the next section, the relaxation times for the con-
served moments should be set to non-zero values. For simplicity, we have chosen a value of unity as the relax-
ation parameter for these moments (s; = s4 = s¢ = 53 = 1) that preserves the influence of the second-order
discretization of the source terms in Eq. (1) (see also Ref. [34]). Furthermore, for the D3Q15 model, it will
be shown through the Chapman—Enskog analysis in Section 3 that the parameter s is related to the bulk vis-
cosity and s19—s14 are all related to the kinematic viscosity. This leaves us with s3, 55, 57, S9, and s15 as free
parameters in this model. On the other hand, for the D3Q19 model by analogy, the parameter s, is related
to the bulk viscosity and s;q, 512, 514 through s;¢ are each related to the kinematic viscosity. Then, s3, ss, 57,
So, S11, 813, $17 through s,9 are the free parameters.
To obtain the LBE model in moment space, the source terms are also transformed as follows:

=7, (29)
where ¢ is the column vector corresponding to the components of the source term S,; G corresponds to the

components of S,. Now, pre-multiplying Eq. (17) by the transformation matrix 7, we obtain the 3D
MRT model

~

[o®+E0,1+0) — fu& ZA1/f<fﬁ_fﬁ> () +Z<aﬁ a/f>51f|x,5 (30)

The hydrodynamic field variables can be obtained from the distribution functions in velocity space as
p= Z]m (31)
vaem F +F6Xll)5 (32)

or, more obviously, directly from the components of the moment space vector, f, i.e., f; and (]_‘ﬁ, where
p =4,6,8 for density and momentum, respectively.

3. Macroscopic dynamical equations for multiphase flow

In this section, the macroscopic dynamical equations for the 3D MRT LBE multiphase flow model devel-
oped above will be derived by employing the Chapman—Enskog multiscale analysis [33] for the D3Q15 velocity
model. The macroscopic equations for other 3D MRT models, such as the D3Q19 model discussed in the pre-
vious section, can be found in an analogous way. Introducing the expansions [43]

00

fE+ES1+5) = = <D (5., (33)
n=0 !
Dt,, = a[n + emkak, (34)
Jo= Zen ;"), (35)
n=0

where € = J, in Eq. (1), the following equations are obtained as consecutive orders of the parameter e:

O(e’) : ;" = f;° (37)

o )

O(e) : D0 = =" Ayfy" + 5., (38)
B
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1
O(e?) : atlfoc(()) + Dy (Lp — 5 Aup) f/fl) - ZAalff[f :

In equivalent moment space, obtained by multlplylng Egs. (37)-(39) by the transformation matrix 7

become
O() : O = fea,
O(el) : (ato + /é:lal)f(o) = _71‘?“) +’\

~ - 1 ~\ ~ o
0(e) : 3,7 + (2, + &) (f 2 A)ﬂ” — A7
where @@ = Te; T\
First let us simplify the source term S, in Eq. (38) as
3 9 3 9
S, = w, {g (e — Uy) + o (& - ﬁ)em} F.+w, {g (eay - uy) + o (€, -t)ey | F,

+W1|:3 (eotz _uz) +24(€_;( 'ﬁ>eo¢z:|Fz
C

(39)

, they

(43)

by neglecting terms of the order of O(Ma?) or higher in its definition, i.e. Eqs. (2) and (8). In Eq. (43), F,, F,
and F. are the Cartesian components of the net force experienced by the particle populations including those

that lead to phase segregation and surface tension effects and imposed forces (e.g., F, =—

axl// + Fs,x + Fext,x)~

Upon substituting Eq. (43), after pre-multiplying by 7, in Eq. (41), we get the components of the first-order

equations in moment space, i.e.

Oy p + Oujy +0yj, + 0./, =0,

1—' - 1
dy (—p + ;j -j) -3 (0ujy + Opjy + 0:j.) = —s2e") + 2(Fyuy + Fyuy + Futz),

5—» — 7
0, (p — ;] ]> 3 (6xjx + ayjy + azjz) = —g;2D — 10(Fuy + Fyu, + F.u.),

, 1 j JxJ Jo
a()v+ax(_ +—“)+6,< y>+a<xz :an
ol 37 ) T n p

7 1 2 e Tyl 7
: —§p—&—3—{5]V 7]§+5]ﬂ)+62<yp>:—s7q£ —ng,

7. Jz JyJ: 7 lr.. . . 7
Oy <3Jz> + 0 J’é) v yp > +@z<9p *3, [51,3 +5/; - 7J§]> = —sog'" 3=

+
2
) + 3 [0:(2/,) — 8yj, — 8.j.] = —3s10plY) + 2(2Fsuy — Fyu, — Fuutz),

2
+ g [ay]y - az]z] = _3511]9&}& + 2(2Fyuy - quz)7

Dl D= D
~.
>~ < ’
I
~
L}
—_—
S~

. L. . .
]xjv> + 3 [any + a}’]x} = _3S12p)(;;)) + quy + F}'u)”

7 7 1 oy i 7
to(—gjx + 0, —§p+$[—7j§+5ji+5ij +9, ( p])> +az(%) = —s5q\" —3F

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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ey, +l[a'+a'}——3 Oy Fou +F (56)
t p]y]z 3 )z zjy - S13p)z YUz Uy,

1 1
azo (pjsz) * § [asz + azjx] = _3514}72) + Fu: + Fuy, (57)

5. <Jyjz) Lo, <JXJZ> +az(1ﬂ) R (58)
p p p ’

The evolution equations express variations at the ¢, time scale level, the dynamical relationships between var-
ious moments constructed from the velocity space, their relaxation parameters and the net forces that include
those that lead to phase segregation and surface tension effects and any external forces acting on the particle
populations.

Similarly, the components of the second-order equations in moment space, i.e. Eq. (42), can be obtained.
Our interest is in the dynamical equations for the conserved moments. For brevity, here we express below only
the second order equations of the conserved moments representing variations at the #; time scale.

0,p =0, (59)

1 1 1 1
atljx—f—a ( [1 —552:|e(1 + |:1 —§S10:|p)(01(>> +av(|:1 _5512}17)@ ) —|—6 (|:1 —§S14:|pzx ) _0 (60)
1 1 1 1 1 1
cui s (|1 gl ) +a, (1]t -3 |1 gt 5 |1 g )
+az<|:1 - S13}P_$)> =0, (61)

1 1
OnJ. + ax(|:1 - 5514}]72), > + 9, ([1 - 5»“13}]7)(;))

1 1 1 1 1 1
+0. <§ {1 —552} eV ) [1 - ESIO}PS() ) {1 - ESII}PSV)V) =0. (62)

Now, combining the first- and second-order equations for the conserved moments, i.e. Egs. (44) and (59), Egs.
(47) and (60), Eqgs. (49) and (61) and Egs. (51) and (62), by using 0; = 0,, + €0,,, we get

and

\]

N =

and

afp + axjx + ayjy + aij = 07 (63)
, 1 1 1 1 1 oy 1 )
a[]x+6<3,0+p]x+3 |:1 E :| +€|:1—2510:|pxx>+a(p +E|:1_2S12:|pxy
el it -

. JxJy 1
0uj, + 0 (7) +e {1 - ESIZ]PJ(&))
1 1 1 1
—sz] el — EE {1 —zslo]p)(ci)ei [1 - zsll]pygv)v)

1
2
; |
+o. (f;fz + {1 Esn]p;y) =F, (65)
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1 1 1 1 1 1 1
+ 0. <3P+—Jz+3 {1 —Esz}em—zG[l —ESIO}P)(;)_EGP _§S11:|p£p1w1> =, (66)
) and p!}) are unknowns to be determined. Writing

respectively. In these equations, ¢'" and p, p(l), p,EB, p
expressions for these terms from Eq. (45) and Egs. (53)—(57), respectively, and employing the continuity

and momentum equations, i.e., Eqs. (44), (47), (49), (51), and neglecting terms of order O(Ma®) or higher,
we get

21 21 -
m__=22 . . iy =L _eq
e 35 Q0 +0) = =5V ] e, (67)
21
p)((i) = 9 (26)6]): - ayjy - aij) = Py _p:)cg’ (68)
S10
21 . .
PE}J = _§ - (a}’Jy - aZJz) ~ pww _pwﬂw (69)
S11
11
(1) _ - . . ~ e
ny - 3 1 (ax]y + ay x) pry px;]m (70)
11
(1) _ - . . ~ e
Py = 3513 (a}’jz + @ZJ},) ~ Py ij’ (71)
11
pgc) = § S_ (a‘Cjz + az]v) pzx _pjg (72)

These equations represent the various gradients of the mass flux fields or momentum in terms of non-equilib-
rium parts of certain moments and their corresponding relaxation times.
Using Egs. (67)—(72) in Egs. (64)—(66), the momentum equations simplify to

2 i ) 1 1 - 5 - -
oo () +0 (55 v () - _ax(_p) Y T IR

0, (v(0uj, +8y4)) + 2-(v(0uf. + 0:fy)), (73)
3, + 0. ( ; ) +0, <p> +o. (M) = }( ) +F, 4+ 0.(v(0y, +9,))
+0 ( [ Wy — % ] +(V- ]) +0:(v(0y) +0.4,)), (74)

and

.; ‘z D 1
oo (i) +a (55) +0(5) = =0(30) v s 4o 060
l - - -
+62(2v[6zjz—§v-j] +CV~j>. (75)

where { and v are the kinematic bulk and shear viscosities respectively. These are related to the relaxation
parameters of the energy and the stress tensor moments by

2/1 1
—Z(Z_2)5 76
“=3 ( 2) : (76)
v—1 P 1 o, p=10,11,12,13,14 (77)
- 3 S/; 2 1y - 9 ’ ’ ) .
Notice that some of the relaxation parameters (s;g = s1; =: - ‘= s14) should be equal to one another to maintain

the isotropy of the viscous stress tensor. From Egs. (76) and (77), we see that the bulk and shear viscosities can
be chosen independently. In particular, this allows us to choose a bulk viscosity larger than the shear viscosity,
so that acoustic modes are attenuated quickly. This is helpful in certain physical situations and could also aid
in improving numerical stability. Finally, substituting for the forcing terms, i.e. F; = —04) + F; + Fex(;, and
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recognizing that the pressure is given by P =1 + 1/3p, the macroscopic dynamical equations for the con-
served moments, i.e. density and momentum, are given by

0p+ V- (pil) =0, (78)
plout, +ii - Vit,) = 0P + Fyy + Fexio + 0,07, + 0,07, + 0,07, (79)
p[atuy +u . VU}:| - ayP‘i‘FsAy +Fext,y +axo-w( +ay0 v+azavz7 (80)
[au2+u vuzi|76P+Fsz+Fexlz+aJ +66 +aGzz’ (81)

where ¢7; is the deviatoric part of the viscous stress tensor,
v 2 = — = =
0y = v[(0,(pwi) + 0i(pu;)) — §V < (pid)oy] + LV - (pid) oy, (82)

F;; is the surface tension force given in Eq. (4), Fex; is the external force, and ij € {x,y,z}. Egs. (78)—(81),
indeed, correspond to the macroscopic equations for multiphase flow derived from kinetic theory [45].

4. 3D MRT LBE model for multiphase flow with reduced compressibility effects

Multiphase LBE models based on inter-particle interactions [13] face difficulties for fluids far from the crit-
ical point and/or in the presence of external forces [44]. This difficulty is related to the calculation of the inter-
particle force involving the term Opf, in the model which becomes quite large across interfaces. As a remedy,
He and co-workers [14] developed a suitable transformation of the distribution function f,, by invoking the
incompressibility condition of the fluid, to g, that determines the hydrodynamic fields, i.e. pressure and veloc-
ity fields. A separate distribution function is also constructed to capture the interface through an order param-
eter, which is different from density. The introduction of these features helps in reducing compressibility effects
in multiphase problems. In this section, we apply this idea to the 3D MRT model discussed in Section 2. Fol-
lowing He et al. [14], we replace the distribution function f, by another distribution function g, through the
transformation

eq,M ’(_)'

g = SRT +y(p) 00, (53)
By considering the fluid to be incompressible, i.c.

d

3 V(p) = (0 + ud)yr(p) = 0, (84)
and using Eqgs. (83) and (16), Eq. (1) becomes

B+ 80 +0) =850 = = 3 (7)o + 3 (13 St (53)
where

eq,M , 6

0 = RT + () D) (86)

The corresponding source terms are
eq,M , m eq,M , m ;q,M , 6
S = (e =) % [(F] o ) 028 <f“ D) L2 ))Wp)] . (87)

Eqgs. (85)—(87) are numerically more stable than the original formulation since the term 04/ is multiplied by a
factor proportional to the Mach number O(Ma), instead of being O(1) when the “incompressible” transfor-
mation is not employed. As a result, this term becomes smaller in the incompressible limit. Now, applying the
transformation matrix to the above system, we get



552 K.N. Premnath, J. Abraham | Journal of Computational Physics 224 (2007) 539-559

B+ 500100 ~8a) = =3 T (B0 87+ 2 (1= 2 Sl (58)

In this new framework, we still need to introduce an order parameter to capture interfaces. Here, we employ a
function ¢ referred to henceforth as the index function, in place of the density as the order parameter. The
evolution equation of the distribution function, whose emergent dynamics govern the index function, must
have the term responsible for maintaining phase segregation and mass conservation. In this regard, we use
Egs. (1) and (2), by keeping the term involving 93 and dropping the rest as they play no role in mass conser-
vation. In addition, the density is replaced by the index function in these equations. Hence, the evolution of the
distribution function for the index function is given by

[2(F+ &0t +0,) — Z Ay <fﬁ - ) |y + ; (lu/f - %Aaﬁ> S18l 1) 01 (89)
where

sy, = (SN ey, (90)
In moment space, this becomes

TR+ E501+8) — [, ZAm(fﬁffﬁ> 5 +Z(aﬁ%mﬁ>sﬁf|“5 (91)

It follows that hydrodynamical variables, such as the pressure and fluid velocity, can be obtained by taking
appropriate kinetic moments of the distribution function g, i.e.

P = Zgy - u,a Ww(p), (92)
1
pRTu; = Z i + 5 RT(Fyi + Fexti)dy, (93)
The index function is obtained from the distribution function f, by taking the zeroth kinetic moment, i.e.
The density is obtained from the index function through linear interpolation, i.e.
-9
p(P) =pL+— = (Pu — po); (95)
bu — o1

where p; and py are densities of light and heavy fluids, respectively, and ¢ and ¢y refer to the minimum and
maximum values of the index function, respectively. These limits of the index function are determined from
Maxwell’s equal area construction [38] applied to the function y(¢) + ¢RT. If the viscosities are different
in different phases, the corresponding relaxation parameters (s;;—s14, Which are equal to one another) in each
phase are obtained from Eq. (77) and their variation across interfaces are determined through a linear inter-
polation similar to that for the density as shown in Eq. (95).

The numerical implementation of this MRT model is as follows: In the collision step, the evolution of dis-
tribution functions are computed in moment space (f and g) through direct relaxation of moments at rates
determined by the diagonal collision matrix A with appropriate updates from the source terms. After trans-
forming the post-collision moments back to the velocity space, the streaming step is performed in velocity
space (f and g). After these two computational steps, the various macroscopic fields are updated. This allows
an efficient implementation of the MRT model for multiphase problems.

In terms of the computational memory and time resources, the MRT model requires a negligible increase
in memory and a moderate increase in computational time, when compared to the BGK model, if appro-
priate optimization strategies are taken. Depending on the lattice velocity model, the transformation matrix
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g is either a 15 x 15 or 19 x 19 matrix. These matrices are the same throughout the domain and so need not
be stored at every lattice site, thus contributing to negligible increase in memory. The corresponding relax-
ation time collision matrices 4 in moment space which are diagonal matrices with 15 or 19 elements, respec-
tively, also do not contribute to any significant increase in memory requirement. The equilibrium
distributions in moment space depend only on the local macroscopic field variables and can be computed
locally without requiring additional storage. The memory requirement for the distribution functions for the
collision and streaming steps in the MRT model is about the same as that required for the corresponding
BGK version.

As noted in Ref. [24], suitable code optimization techniques should be applied to avoid substantial increase
in computational time due to the use of the MRT model. First, direct matrix computations, which can lead to
increased computational overhead, should not be carried out in the transformation between velocity and
moment spaces. Instead, the transformation between the components of the distribution functions in velocity
space f, and the moments f; should be carried out explicitly using the expressions obtained from the trans-
formation matrix, which is an integer matrix with several common elements and many zeroes. In these calcu-
lations, all the common sub-expressions should be computed just once. Second, the computational algorithm
should be carried out as discussed in the previous paragraph. With such optimization strategies, the MRT
model only incurs a moderate increase in computational time, about 35% more than the BGK model for
the cases discussed in the next section, but with significantly improved stability.

5. Results and discussion

The 3D MRT model developed in the previous section will now be evaluated for some benchmark multi-
phase problems. Unless otherwise specified, we express the results in lattice units, i.e., the velocities are scaled
by the particle velocity ¢ and the distance by the lattice spacing ¢,. We first consider a static multiphase prob-
lem, namely, the verification of the well-known Laplace—Y oung relation for a stationary 3D drop. This rela-
tion expresses the force balance between the excess pressure inside the drop and the surface tension force. If
AP is the pressure difference between the inside and outside of a drop of radius Ry with surface tension o, we
have AP = 26/Ry.

We first simulate this problem with a D3Q15 lattice by considering drops of three different radii 15, 21 and
27. The corresponding 3D domain is discretized by 41 x 41 x 41, 61 x 61 x 61, and 81 x 81 x 81 lattice sites,
respectively. Periodic boundary conditions are considered in all directions. We simulate drops in a gas with
an equal shear kinematic viscosity of 1.0 x 102 for the gas and liquid and a density ratio of 4. We have chosen
equal kinematic viscosities for both the phases just for simplicity. The MRT model developed in this work is
not limited to choosing only identical viscosities for both the phases. Indeed, as noted in the previous section,
when there is a viscosity mismatch, the corresponding relaxation parameters will be different in each phase and
their values across interfaces can be obtained by linear interpolation of viscosities through the index function
¢. It is a known limitation that the underlying LB interfacial physical model [13,14] is stable for only low den-
sity ratios. The MRT model has relatively little influence on this limitation. However, as will be shown below,
it can significantly increase the stability at lower viscosities.

It may be noted that when the BGK model is employed to simulate multiphase flow with the viscosity used
above, the computations become unstable. As discussed in Section 2, we choose the relaxation parameters s,
4, S¢ and sg to be 1.0. The parameters s,, where o = 10,11,12,13, 14, as shown in Eq. (77), are obtained from
the shear kinematic viscosity. On the other hand, the bulk kinematic viscosity is related to s, (see Eq. (76)). We
consider s, = 1.0. Thus, the time scales for the shear and bulk viscosities are different. The remaining free
parameters s3, S5, $7, o and s15, whose values have no effect on hydrodynamics, are chosen to be equal to
1.0 for simplicity.

Fig. 3 shows the computed pressure difference across the drop interface as a function of inverse drop radii
for three values of the surface tension parameter: x = 0.08, 0.10 and 0.12. The lines correspond to a linear fit
for the computed data. We find that for these selected parameters the computed pressure difference agrees with
the Laplace—Young relation prediction to within 8%. To check the validity of the MRT lattice model with a
larger velocity set, i.e. the D3Q19 model, we performed some selected computations, which are shown as open
symbols in the same figure. The D3QI15 and D3Q19 models yield results that have negligible difference
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Fig. 3. Pressure difference across a drop as a function of radius for different values of the surface tension parameter (x); Bold symbols
employ the D3Q15 model, open symbol the D3Q19 model.

between them. Henceforth, for comparison purposes we will only consider results obtained with the D3Q15
lattice. The density profile across the drop interface is found to be characterized well with no anisotropic
effects. As with other LB models, and with methods based on the direct solution of Navier—Stokes equations
for multiphase flows, velocity currents around the interfaces are observed. These are generally small and is
found to be proportional to the surface tension parameter k.

Next, we consider a dynamical problem, namely, the oscillation of a liquid drop immersed in a gas. We
employ the analytical solution of Miller and Scriven [46] for comparison with the computed time periods.
According to Ref. [46], the frequency of the nth mode of oscillation of a drop is given by

* l *% 1 2
e YO Ve (96)

where w, is the angular response frequency, and ] is Lamb’s natural resonance frequency expressed as [47]

. 2_n(n+1)(n—1)(n—|—2)6
S R 7

Ry is the equilibrium radius of the drop, ¢ is the interfacial surface tension, and p; and p, are the densities of
the two fluids. The parameter y is given by

1
B (2n+ 1) (0, )?
=T 1 1
2Ry[npyg + (n+ 1)p)] | (mp))* + (ugpg)z}

1 (98)

where yy and p, are the dynamic viscosities of the two fluids. Here, the subscripts g and 1 refer to the gas and
liquid phases, respectively. We consider the second mode of oscillation, i.e. n = 2, and analytical expression for
the time period T,y is obtained from Eq. (96) through T, = 21/w-.

The initial computational setup consists of a prolate spheroid with a minimum and maximum radii of 11
and 15, respectively, and placed in the center of a domain discretized by 41 x 41 x 41 lattices. We consider a
density ratio of 4 for different values of shear viscosity and surface tension parameters. Fig. 4 shows the drop
configurations at different times for v = 1.6667 x 10~ and x = 0.10. At ¢ = 100, the drop has a prolate shape
which temporarily assumes an approximate spherical shape at ¢t =500. At ¢ = 700, notice that the drop
becomes an oblate spheroid and at the longer time of t = 6000, the drop assumes its equilibrium spherical con-
figuration. Computations are also performed by reducing the shear viscosity by 2.5 and 5 as a function of time
from the above value, i.e. to 6.667 x 107> and 3.333 x 10~>. When the BGK model is employed for computa-
tions of drop oscillations, it is stable only to the point where the viscosity is lowered to v = 1.6667 x 1072,
Thus, the 3D MRT multiphase flow model allows the viscosity to be lowered (or enhances the Reynolds num-
ber) by a factor of 5 in this case as compared to the BGK model employing the same underlying physical
model, based on the kinetic theory of dense fluids [13,14].
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Fig. 4. Configurations of an oscillating drop at different times in lattice units; pi/p, =4, /e = 4, Vi = vy = 1.6667 x 1072, k =0.1.

v,=3.333x10°
v, = 6.667 x 10°
v, = 1.667 x 102

Interface location, A(t)

©

0 2000 . 4000 6000
time, t

Fig. 5. Interface location of an oscillating drop as a function of time for different kinematic viscosities, vi; pi/p, =4, u/py =4, kK =0.1.

Fig. 5 shows the interface locations of the oscillating drops as a function of time for the three shear viscos-
ities noted above when x = 0.1. As expected, when the viscosity is reduced, it takes longer for the drops to
reach the equilibrium shape by viscous dissipation. The computed time periods of oscillations T;pgg are
1201, 1173 and 1159 when the viscosities are v = 1.6667 x 1072, 6.667 x 10~ and 3.333 x 107, respectively.
The corresponding analytical time periods T, are 1258, 1202 and 1173, respectively. Thus the maximum rel-
ative error is 4.80%. Let us now decrease the surface tension parameter x to 0.08 from 0.10. Decreasing the
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Fig. 6. Interface location of an oscillating drop as a function of time for different kinematic viscosities, vi; pi/p, =4, /1 =4, k£ = 0.08.

surface tension parameter reduces the surface tension of the drop. As a result, it is expected that the drop
would take longer to complete a period of oscillation.

Fig. 6 shows the interface locations for the three shear viscosities noted above when x = 0.08. The com-
puted time period, for example, when v = 1.6667 x 102 is 1412 and the corresponding analytical value is
1348. Both these values are higher than those at the same value of viscosity for the higher surface tension
parameter, which is consistent with expectation. To confirm the trend with surface tension, we performed
computations by increasing x to 0.12 from 0.10. Fig. 7 shows the interface locations when k = 0.12. When
v=1.6667 x 1072, the computed time period is 1143, which agrees with the analytical value within 4.60%.
As this value is lower than with the surface tension parameter of 0.1, we conclude that the computations repro-
duce variations with surface tension which are consistent with expectation from the analytical solution. The
3D MRT model is able to reproduce the time period of oscillations within 5%.

The 3D MRT model remains as stable as in the previous cases even for more complex dynamical problems
such as when drops undergo shearing and other types of motions. In a recent study, this model was applied to
simulate collision of a pair of drops under different conditions [37]. In particular, when employed to study off-
center collisions it is able to reproduce experimentally observed [48] complex interfacial shape changes due to
such dynamical events as shearing, rotation, stretching deformation and breakup, while maintaining an
improved stability compared to the BGK model. Indeed, in some cases reported in Ref. [37] as much as an order
of magnitude improvement in stability was observed by the use of MRT model in lieu of the BGK model.

6. Summary and conclusions

In this paper, we develop 3D MRT LB models for multiphase flows. They employ the LBE with a general-
ized collision term together with forcing terms representing interfacial physics. By considering 3D lattice veloc-

v,=3.333x 10°
v, =6.667 x 107
v, =1.667 x 10?2

7,
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time, t

Fig. 7. Interface location of an oscillating drop as a function of time for different kinematic viscosities, vi; pi/p, =4, w/ug =4, k£ =0.12.
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ity models and a second-order discretization of the forcing terms, the LBE written in terms of the distribution
function is transformed into an equivalent system represented by a set of conserved and non-conserved
moments. The conserved or hydrodynamic moments include the fluid density and momentum, while the
non-conserved or kinetic moments include heat fluxes and viscous stresses. The models are developed such
that when the collision term in the LBE is written in moment space, the moments relax to their equilibrium
values at rates that can be adjusted independently.

By applying the Chapman—-Enskog multiscale analysis to the MRT models, we show that they correctly
recover the 3D hydrodynamical equations for multiphase flows in the continuum limit. The dynamical rela-
tionships between various moments and the forcing terms, including surface tension forces, are systematically
derived. Some of the relaxation parameters in the collision term are shown to be related to the shear and bulk
kinematic viscosities of the fluid. The ability to independently adjust the relaxation parameters enhances the
stability of the MRT models. The models are evaluated for accuracy by solving some multiphase test prob-
lems. It is shown that the 3D MRT models verify the Laplace—Young relation for static drops to within
8%. Computations with MRT models of drop oscillations show that shear viscosities can be lowered by a fac-
tor of 5 when compared to the BGK model. The computed time period of oscillations agrees with the analyt-
ical solution to within 5%. The MRT model, when applied to more complex multiphase problems such as
binary drop collisions, is found to be as stable as that for these simple canonical problems. The MRT
approach developed in this work can be extended to LBE multiphase flow models such as those developed
in Refs. [16,17] to handle high density ratio problems. Moreover, it also provides a more natural framework
to extend the LBE for more general situations such as viscoelastic or thermal effects in multiphase flows in
future investigations.
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Appendix A. Simplified transformation matrices for unit lattice spacing

For unit lattice spacing and time steps, i.e. ¢ = 1, the transformation matrix, Eq. (23), for the D3Q15 model
simplifies to

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 17
-2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
16 -4 -4 -4 -4 -4 —4 1 1 1 1 1 1 1 1
0 !l -1 0o 0 o o0 1 -1 1 -1 1 -1 1 -1
o -4 4 0 o0 0 01 -1 1 -1 1 -1 1 -1
0O 0 O 1 -1. 0 o0 1 1 -1 -1 1 I -1 -1
o o o0 -4 4 0 0 1 1 -1 -1 1 I -1 -1

=0 0 0 0 O I -1 1 1 1 I -1 -1 -1 -1
o o0 o0 o0 0 -4 4 1 1 1 1 -1 -1 -1 -1

o 2 2 -1 -1-1-10 0O O O O O O O

0o o0 0 1 1 -1 -10 0 0 O O O 0 O

o o o o o o0 o0 1 -1 -1 1 I -1 -1 1

o o o o0 o o0 o 1 1 -1 -1 -1 -1 1 1

o o o o0 o0 o0 o1 -11 -1 -1 1 -1 1
Lo o o0 o0 o0 o0 o 1 -1 -1 1 -1 1 I —1]
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and that for the D3Q19 model to

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17

-30 -11 -11 —-11 —-11 -11 -11 8 8 8 & 8 8 & 8 8§ 8 8 8

12 -4 -4 —4 -4 -4 -4 1 1 1 1 1 1 1 1

0 1 -1 0 0 0 0 1 -1 1 -1 -1.1 -1.0 0 0 O

0 -4 4 0 0 0 0 1 -1 1 -1 -1 1 =10 0 0 O

0 0 0 1 -1 0 0 1 1 -1 -1 0 0 0O O 1 -1 1 -1

0 0 0 -4 4 0 0 1 1. -1 -1 0 0 0 O 1 -1 1 -1

0 0 0 0 0 1 -1 0 0 o0 o0 1 1 -1 -1 1 1 -1 -1

0 0 0 0 o -4 4 0 0 O O 1 1 -1 -1 1 1 -1 -1
IT=10 2 2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 =2 =2 -2 =2
0 -4 —4 2 2 2 2 1 1 1 1 1 1 1 1 -2 -2 -2 =2

0 0 0 1 1 -1 =11 1 1 1 -1 -1-1-1 0 0 O O

0 0 o -2 -2 2 2 1 1 1 1 -1 -1-1-1 0 0O 0 O

0 0 0 0 0 0 0 1 -1-1. 1 06 0 0 O O O O O

0 0 0 0 0 0 o o0 o0 o0 o o O o O 1 -1 -1 1

0 0 0 0 0 0 o o0 o o0 o 1 -1-11 0 0 0 O

0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1.1 0 O O O

0 0 0 0 0 0 0 -1 -1 1 o 0o 0 o 1 -1 1 -1
L 0 0 0 0 0 0 o o0 o o o 1 1 -1 -1-1-11 1
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